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X-ray dynamical diffraction in a deformed crystal is studied using the

interbranch resonance concept. It is shown that appreciable beating of the

X-ray intensities may be induced by a lattice distortion that produces

interbranch transformations of the local dispersion surface. In X-ray plane-

wave topography, this effect may be observed as interference fringes arising

around the kinematical image of a defect. It is predicted that such interbranch

fringes can be induced by edge dislocations.

1. Introduction

X-ray studies of new materials used in modern technologies

and advanced applications often run into serious difficulties

due to strong deformation of the crystals. For example,

appreciable lattice distortions may be caused by defects

appearing in a crystal during the growth process, or may be

due to specific manipulations of a sample. Strong deformations

induce intense interbranch scattering (Penning, 1966; Authier,

1967). The X-ray diffraction problem may be analytically

solved only for some models of strain distribution (Authier,

2005). However, the solutions have a very sophisticated form

that considerably complicates their practical utilization.

Therefore, numerical calculations of the X-ray intensities have

to be carried out in most cases.

It should be noted that activation of interbranch scattering

also leads to drastic changes in the dispersion properties of

the X-ray wavefields predicted by the concept of the local

dispersion surface (Penning & Polder, 1961). The conditions of

applicability of this concept for different degrees of defor-

mation were studied by Balibar & Malgrange (1975). By

building the crystal wave packets, it was established that the

criterion for the concept of the local dispersion surface

becoming inapplicable coincides with the criterion of validity

of the eikonal approximation of X-ray dynamical theory,

obtained by Authier & Balibar (1970).

For investigation of the X-ray interbranch scattering by a

highly deformed crystal, the interbranch resonance concept

was elaborated in the eikonal representation of X-ray dyna-

mical theory (Shevchenko, 2005). According to the concept,

the local dispersion surface for the given polarization consists

of four sheets which are formed due to the interbranch split-

ting of the pair of branches corresponding to a misoriented

locally perfect crystal. One of the important parameters of this

theory is the interbranch extinction length �gðz0Þ ¼

4�2=½�gg u00ðz0Þ�, such that z0 is the point where the Bragg

condition is locally satisfied and �g, g and u(z) are the

conventional X-ray extinction length, the diffraction vector

and the displacement field, which depends on the depth in the

crystal, respectively. The inverse value k�ðz0Þ ¼ 1=�gðz0Þ

determines the interbranch contribution to the resonance

splitting of the dispersion surface at the point z0. As shown by

the results of the theory, the interbranch splitting must be

taken into account when the interbranch contribution is

greater than (or equals) the into-a-branch contribution. In this

case, the following condition should be fulfilled:

k�ðz0Þ � 1=�g: ð1Þ

[It is clear that the into-a-branch process will prevail over the

interbranch scattering when condition (1) is violated.] In this

work, we assume that the gradients of deformation are

considerably greater than the values corresponding to the

eikonal approximation of X-ray dynamical theory. At the

same time, we suppose that gradients are not so large that the

value k�ðz0Þ is of the order of 1=�g. In this connection, we will

analyze the correlation between the degree of deformation

and the intensities of the transmitted and diffracted waves.

Owing to the resonance character of the interbranch splitting,

one can hope that the splitting effect may prominently

manifest itself in the X-ray intensities related to the defor-

mation satisfying condition (1). Moreover, we will extend the

considerations to the case of a long-range strain field caused

by a single dislocation. We will examine this point in detail

assuming an edge dislocation.

2. Oscillations of the transmitted and diffracted
intensities excited by a lattice distortion

Assuming that the strain field depends on the depth in the

crystal, Takagi’s equations for amplitudes of the transmitted

and diffracted waves D0;g have the following form in the case

of symmetrical Laue diffraction:

d2D0;gðzÞ

dz2
þ

("
�2

�2
g

þ q2ðzÞ

#
�

i

2
g

d2uðzÞ

dz2

)
D0;gðzÞ ¼ 0; ð2Þ



where qðzÞ ¼ ½sþ g duðzÞ=dz�=2 and s is the departure from

Bragg’s law of the incident wave. It is necessary to remark that

the amplitudes D0;gðzÞ are determined up to the phase factor

expfi
R

qðzÞ dzg. This factor does not contribute to the X-ray

intensities and, therefore, it can be omitted. It is worth noting

that the limit of the validity of the eikonal approximation of

X-ray dynamical theory can be directly deduced from equa-

tions (2). For this purpose, it is necessary to compare the first

extinction term in the square brackets and the last gradient

term in the braces, which must be small for a weak deforma-

tion. Thus, we can obtain the following estimation:

�2
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�
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g

d2uðzÞ

dz2

����
����: ð3Þ

Condition (3) is the criterion of the validity of the eikonal

approximation. It is equivalent to saying that the deformation

of the lattice over a unit distance is much smaller than a

rotation of the order of the width of the rocking curve over a

distance equal to the Pendellösung distance �g (Authier &

Balibar, 1970). On the other hand, the gradient of deformation

satisfying condition (1) considerably exceeds the gradients

associated with the eikonal limit. This means that the

conventional Pendellösung beating inherent to both a perfect

and a slightly deformed crystal will be absent for the gradient

corresponding to equation (1). Nevertheless, taking into

account that condition (1) is still associated with the X-ray

dynamical diffraction, one can hope that it may determine

appreciable dynamical effects which are due to the lattice

distortions. In this connection, we will analyze the transmitted

and diffracted intensities calculated with the help of the

numerical solution of Takagi’s equations.

Moreover, we will be interested in applying our consid-

erations to the case of a distortion induced by a defect located

inside the crystal. The deformation will increase sharply with

the depth z on approaching the defect. Taking this into

account, we will approximate the lattice distortion by the

increasing exponential uðzÞ ¼ u0 expfz=lg, where u0 and l are

the amplitude of the deformation and the characteristic depth

specifying its increment, respectively. Clearly, by varying the

parameters u0 and l, it is possible to change the steepness of

the strain distribution and, consequently, to model the

different kinds of defects.

Using the resonance condition (1), one can determine the

deformation corresponding to the interbranch splitting of the

local dispersion surface. If we put z0 ¼ 0 in condition (1), we

get

k�ð0Þ ¼ "=ð2�gÞ � 1=�g; ð4Þ

where " ¼ g u0�
2
g=ð2�

2l2Þ. Obviously, relation (4) is equivalent

to the condition "=2 � 1, which determines the resonance

value ". Condition (4) is strongly satisfied everywhere in the

deformed region of the crystal and, moreover, it can also be

considered as the threshold relation which separates the

influences of the into-a-branch and interbranch contributions

on the dispersion properties of the X-ray wavefields. Bearing

this in mind, we will calculate the X-ray intensities for the

deformations " ¼ 2 and " ¼ 4, which satisfy condition (1), and

deformation " ¼ 1, satisfying the opposite inequality "=2< 1.

The curves corresponding to these deformations are plotted in

Fig. 1. [In all cases, it is also assumed that the value �g=ð�lÞ ¼ 2

and the dimensionless departure ! ¼ s�g=ð2�Þ ¼ �2.]
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Figure 1
Transmitted (solid line) and diffracted (dotted line) intensities versus z
(in units of �g=�) for deformation (a) " ¼ 1, (b) " ¼ 2 and (c) " ¼ 4.
Departure of the incident wave from Bragg’s law ! ¼ �2.



As one can see, oscillation variations with thickness appear

in the transmitted and diffracted intensities. The oscillations

are complementary; when the transmitted intensity is

maximal, the diffracted one is minimal and vice versa. It

should also be noted that we are interested in studying only

the few first oscillations, which are accompanied by appreci-

able changes of the X-ray intensities and, therefore, can be

treated as a dynamical effect. The remaining oscillations fall

off rapidly with thickness due to X-ray kinematical diffraction

and they tend to the kinematical limit as z!1.

Among the numerical results presented here, the most

pronounced oscillations are evidently excited for the defor-

mation " ¼ 2. For weaker deformation (" ¼ 1) and for

stronger deformation (" ¼ 4) the oscillations are less promi-

nent. In the former case, the into-a-branch scattering is still

significant, such that at sufficiently large z the diffracted

intensity is greater than the transmitted intensity (see Fig. 1a).

Meanwhile, the interbranch scattering prevails over the into-a-

branch scattering in the latter case, such that the transmitted

intensity exceeds the diffracted intensity (see Figs. 1b and c).

This means that the oscillation effect, which is most

appreciable for " ¼ 2, is due to a fragile balance between the

interbranch and into-a-branch scattering. Moreover, it is

necessary to admit that the oscillations of the X-ray

intensities are beyond the conventional range �zD of X-ray

dynamical diffraction, which is determined by the condition

ð�g=�ÞjqðzÞj<� 1. (For the deformations " ¼ 1, 2 and 4 the

range �zD in units of �g=� is given by the intervals {0.35–0.90},

{0.0–0.55} and {0.0–0.2}, respectively.) Clearly, this fact reflects

the interbranch character of the oscillation effect, associated

with the interbranch sharp changes of the phase of the X-ray

wavefields, which may occur in strongly deformed regions

following the range �zD. Within the range �zD, the conven-

tional Pendellösung effect disappears due to the considerable

deformations in these cases (see Fig. 1). Nevertheless, the into-

a-branch scattering is able to lead to a considerable growth of

the diffracted intensity, which is the largest in the case of the

deformation " ¼ 1.

Thus, taking into account that the oscillations considered

are out of the range �zD and precede the kinematical features,

we will call them transient beating. It is worth paying attention

to the fact that the depth of their location also depends on the

departure !. With increasing absolute value of !, the transient

beating is displaced to a more deformed region of the crystal

(compare Figs. 1b and 2, which correspond to the same

deformation but different values of !). It turns out that this

fact will play an important role in the further discussion

concerning the practical application of the beating effect to

the study of lattice defects.

3. Theoretical aspects of the interbranch transient
beating effect

For theoretical study of the diffraction effects originating in

the interbranch splitting of the X-ray wavefields, one may

apply the ‘eikonal’ representation of dynamical theory. Then,

for the wavefields constituting the transmitted beam, the

appropriate fundamental equations have the form

dA1;2
0 ðzÞ

dz
¼ �

A2;1
0 ðzÞ expf	ð2i�=�gÞ

R z

0 pðz1Þ dz1g

2p2ðzÞ½!� ð1þ !2Þ
1=2
�

d�ðzÞ

dz
; ð5Þ

where �ðzÞ ¼ �gqðzÞ=� and pðzÞ ¼ ½1þ �2ðzÞ�1=2. The ampli-

tudes A1;2
0 ðzÞ are the coefficients of the expansion

D0ðzÞ ¼
P

j¼1;2 A
j
0ðzÞ�

j
0ðzÞ, where �1;2

0 ðzÞ are the eikonal

solutions for the transmitted wave of Takagi’s equations for

the ‘upper’ and ‘lower’ dispersion branches, respectively.

Equations (5) can be deduced from Takagi’s equations by

exploiting the variation Lagrange formalism (Shevchenko,

2005). It should be noted that by using equations (5) it is

possible to calculate rigorously the contribution of the inter-

branch scattering to the phase of the X-ray wavefields in the

case of strong deformation specified by "� 1. This contri-

bution is most considerable near the point z0, which is the

complex turning point for the eikonal solution. In a highly

deformed crystal, the interbranch phase changes may also lead

to the ‘fine structure’ diffraction effects predicted by Shev-

chenko (2009).

The interbranch splitting of the local dispersion surface can

be directly derived from equations (5). Indeed, in the close

vicinity of any point zs, one can approximate the X-ray

wavefields by plane waves, such that the solutions of equations

(5) have the form

A1;2
0 ðzÞ ¼ Cþ1;2ðzsÞ exp iðQs 	WsÞz

� �
þ C�1;2ðzsÞ exp ið�Qs 	WsÞz

� �
: ð6Þ

Here the value 2Qs ¼ 2½W2
s þ ð�=�sÞ

2
�
1=2 determines the

interbranch splitting of the local dispersion surface, where the

value �=�s ¼ �gg u00ðzsÞ=½4�p2ðzsÞ� is the interbranch contri-

bution to the splitting at zs and Ws ¼ �pðzsÞ=�g is the phase

deviation from the interbranch contribution, produced by the

into-a-branch scattering. As shown by equations (6), each of

the wavefields corresponding to the local dispersion surface

splits up into the pairs of ‘new’ waves specified by the wave-

vectors �Qs �Ws and �Qs þWs.
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Figure 2
Transmitted (solid line) and diffracted (dotted line) intensities versus z
(in units of �g=�) for the departure ! ¼ �4 and the deformation " ¼ 2.



The energy distribution between the waves of the trans-

mitted beam can be described with the help of the ‘new’ Bloch

modes  �B ðzÞ, which in the vicinity of point zs have the form

 �B ðzÞ ¼ expf�Qszg
�
C�1 ðzsÞ expf�iWszg�

1
0ðzÞ

þ C�2 ðzsÞ expfiWszg�
2
0ðzÞ

�
: ð7Þ

By analogy with conventional X-ray dynamical theory, the

expressions (7) for ‘new’ Bloch modes are appropriate

combinations of the waves corresponding to the ‘new’ upper

and lower branches. Taking into account the fact that at the

point zs the eikonal solutions �1;2
0 ðzÞ can be approximated by

plane waves with the wavevectors �Ws, respectively, we

rewrite equations (7) as

 �B zð Þ ¼ exp �Qsz
� �

 �s ; ð8Þ

where  �s ¼ C�1 ðzsÞ þ C�2 ðzsÞ are the amplitudes of the Bloch

modes. As shown by expression (8), the ‘new’ Bloch modes,

corresponding to wavevectors �Qs, possess local translation

symmetry by infinitesimal spacing. Bearing in mind expression

(8), one can obtain for the transmitted intensity

I0ðzÞ ¼  þs
�� ��2 þ  �s

�� ��2 þ 2 cos 2Qszþ ’s

� �
; ð9Þ

where ’s ¼ argf þs ð 
�
s Þ


g. In expression (9), the last term

describes the interference of the ‘new’ Bloch modes, specified

by the wavevector Qs. In this connection, it makes sense to

interpret the transient beating as the result of the interference

of the ‘new’ Bloch modes associated with the interbranch

splitting of the local dispersion surface. Meanwhile, for a

weak distortion, this effect disappears and the conventional

Pendellösung beating follows from this theory. Substituting

the solution (6) into equations (5), we write the ratios for the

amplitude C�1;2ðzsÞ to show

C�2 ðzsÞ

C�1 ðzsÞ
¼ i��s �sðQs 	WsÞ; ð10Þ

where ��s ¼ expfð	2i�=�gÞ
R zs

0 pðzÞ dzg. It follows from equa-

tions (10) that for a weak deformation (i.e. when Ws � �=�s),

the amplitude Cþ2 � Cþ1 and C�1 � C�2 . Then, by neglecting

the ‘new’ waves Cþ2 and C�1 in solution (6), we reduce the

expression for the amplitude D0ðzÞ to the conventional

representation for a two-sheet dispersion surface specified by

the wavevectors ��pðzsÞ=�g, which are limits of the appro-

priate values�Qs for a slightly deformed crystal. On the other

hand, for large gradient satisfying the condition �=�s � Ws,

the interbranch transient beating will be absent too. This is

due to the interbranch transfer of the energy from the  þB
Bloch mode to the  �B mode within the range �zD (Shev-

chenko & Pobydaylo, 2005). As a result, beyond �zD  
þ
B ! 0

and, consequently, the interference of the ‘new’ Bloch modes

can be neglected. However, in the case of the intermediate

deformation Ws ’ �=�s, a considerable part of the energy

does not transfer from the  þB mode to the  �B one within the

range �zD due to still considerable into-a-branch scattering.

Thus, when a balance between the interbranch and into-a-

branch scattering happens, the modes  �B will have compar-

able amplitudes beyond �zD and, therefore, their interference

may be significant in this case.

Summing up the phases of the X-ray wavefields, one can

obtain the resulting phases of the ‘new’ Bloch modes at any

point z as �
R z

0 Qðz1Þ dz1 (Shevchenko, 2009). Hence, the

positions zn of the interference features can be calculated from

the expression

Rzn

0

Q z1ð Þ dz1 ¼ ð�=2Þn; ð11Þ

where integer n = 1, 2, 3, . . . . Bearing in mind that the cosine

function describes interference of the ‘new’ Bloch modes

constituting the transmitted beam, it is natural to suggest that

odd numbers n correspond to the minimum of the transmitted

intensity, whereas even numbers n correspond to the

maximum of the intensity I0. To verify these considerations,

we compare the values zn obtained from equation (11) with

the appropriate zmax and zmin following from the numerical

solution of Takagi’s equations (2). The results of the calcula-

tions for the first five maxima and minima of the intensity I0

are given in Table 1.

It is obvious that there is a good correlation between the

values of zmin and z2k�1 and also between zmax and z2k. This

fact demonstrates the correctness of the viewpoint presented

here of the nature of the beating effect in a strongly deformed

crystal. As shown by the table, the period of beating decreases

with increasing depth z (i.e. with growing local distortions) and

it tends to the kinematical value, which does not depend on

the extinction length. It should also be noted that the positions

of the interference maximum and minimum corresponding to

the diffracted wave will be complementary to the interference

features of the transmitted wave. This means that odd

numbers n satisfying condition (11) will determine the

maximum of the diffracted intensity, whereas even numbers n

will specify the minimum of the diffracted intensity.

4. Interbranch transient beating induced by an edge
dislocation

Interbranch transient beating was shown to be the inter-

ference effect owing to a lattice distortion. It is specified by the

considerable gradient that causes the interbranch splitting of

the local dispersion surface. Moreover, for excitation of the

beating, it is necessary that the interbranch contribution to the

phase of the X-ray wavefields would be of the order of the

into-a-branch contribution. It follows from this that the
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Table 1
Positions of the interference maxima and minima in units of �g=� of the
transmitted intensity I0 in the case of the deformation " ¼ 2.

k zmin z2k�1 zmax z2k

1 0.89 0.78 1.15 1.10
2 1.31 1.28 1.43 1.41
3 1.52 1.50 1.60 1.58
4 1.66 1.65 1.72 1.71
5 1.77 1.76 1.82 1.81



interbranch extinction length �g must be comparable with the

conventional extinction length �g. [In this connection, see also

conditions (1) and (2).] This means that the period of the

beating, estimated as the value �g, will have an appreciable

magnitude. Therefore, one can suggest that the beating effect

may be observed in X-ray topography experiments, which deal

with a long-range strain field. A crystal characterized by a

sufficiently large value of �g would be preferable for such

studies. Taking this into account, we recall the work of Kito &

Kato (1974) devoted to the X-ray topography studies of

growth of an NaClO3 crystal specified by a small structure

factor. It was reported that besides well known Pendellösung

fringes (Kato, 1963), fringes of an apparently different type

are observed in the X-ray patterns. It was also established that

they are accompanied by a continuous lattice bending asso-

ciated with the discreet misorientation at the boundary of the

growth sectors. By analogy with the conventional Pendel-

lösung fringes, the new fringes were observed to be due to the

relevant wedge-shaped growth sectors. Moreover, in the work

by Tikhonova (1979), nonconventional oscillations of the

X-ray intensities arising in the strongly deformed region were

also described for a homogeneously bent crystal. They were

treated as a dynamical diffraction effect different from the

Pendellösung beating.

In a real crystal, continuous deformations are often caused

by dislocations. In this case, one can observe the direct image,

which is due to the reflection of the X-ray direct beam by the

more distorted areas close to the diffraction core (Authier,

1967; Miltat & Bowen, 1975). Assuming an edge dislocation,

we would like to discuss the possibility of exciting of inter-

branch transient beating, which enables the study of details of

the direct image. In this connection, it is also worth noting that

interference fringes caused by lattice distortions around some

defects were observed in resonant scattering X-ray topo-

graphy for GaAs in the Laue case (Negishi et al., 2007). These

defects were suggested by Negishi et al. (2004) to be an edge

dislocation. Bearing this in mind, we present arguments to

support this viewpoint by applying the considerations devel-

oped above.

For simplicity, we suppose that a slip plane is oriented

parallel to the crystal surface, such that one can distinguish

dislocations with different orientations of Burgers vectors (see

Figs. 3a and b). As one can see, the reflecting planes on

different sides of the dislocation line deviate from their posi-

tions in the perfect crystal in opposite ways. This means that

the Bragg condition may be locally satisfied only on one side

of the dislocation line, which deviates in the opposite sense

relative to the departure !. Then interbranch scattering may

be activated on this side while it will be absent on the other

side of the dislocation line.

Thus, in the case of an edge dislocation, the interbranch

transient beating may occur only on one side of the dislocation

line. Clearly, a change in sign of the dislocation leads to

excitation of the beating on the other side of the dislocation

line. It should be noted that these facts were experimentally

verified in the work by Negishi et al. (2007). It was found that

around two defects (defined as A and B) the interference

fringes arise only on one side of the kinematical image, such

that these sides are different for the defects. By suggesting that

these fringes are due to the interbranch effect, it is natural to

consider such defects as edge dislocations which have opposite

signs. Moreover, taking into account the diffraction schemes

sketched in Figs. 3(a) and (b), it is possible to predict as well

that contrasts around the defects must be reversed with a

change of direction of g.

It is necessary to admit that the interbranch transient

beating can be directly observed in X-ray plane-wave topo-

graphy due to the specific character of the strain distribution

near the dislocation line. In the given case, the displacement u

can be approximated by (Hirsh et al., 1977)

u ¼ b tan�1 2ðz� yÞ=x
� �

; ð12Þ

where y and x are the depth of the location of the dislocation

in the crystal and the distance from the dislocation line in the

direction parallel to the crystal surface, respectively. It follows

from equation (12) that the distorted region which contributes

to the interference fringes in the X-ray images is curved. This

is shown in Fig. 4, which corresponds to the right-hand side of

the region near the dislocation line.

In Fig. 4, the dashed region responsible for the interference

fringe is between the two circles expressed by the formulas

following from equation (12):

z� yð Þ
2
þ x� R1;2

� �2
¼ R2

1;2;

here R1;2 ¼ b=ð2��1;2Þ, where ��1 and ��2 (��2 >��1)

are the effective misorientations which determine the

boundaries of the region of the interbranch beating. It is

necessary to take into account that this effect is inherent to

the highly distorted region, which in relation to the incident

wave is specified by a misorientation greater than the angle

� 1=2, where � 1=2 is the perfect crystal reflection range.

Thus, we can imply that ��1 ¼ ���i þ� 1=2 and ��2 ¼
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Figure 3
X-ray diffraction in a crystal which contains positive (a) and negative (b)
edge dislocations.



���i þ K� 1=2, where ��i (��i < 0) is the angular

departure of the incident wave from Bragg’s law and K is a

coefficient greater than 1. It specifies the upper limit of the

angular range of exciting of the interbranch beating. (The

value of K in Fig. 4 is 2.)

Thus, the curved form of the transient beating region makes

it possible to observe the fringes in the X-ray pattern. More-

over, it follows from this experiment that the fringe spacing

increases as the distance from the defect increases. In other

words, the period of the beating decreases when approaching

the defect, around which the deformation increases consid-

erably. Clearly, this fact also agrees with the numerical results

presented in Table 1, which show a decrease of the period with

increasing z, that is to say, with increasing lattice distortions.

This property of the beating can also be verified analytically,

by taking the limit z!1 in expression (11).

Another feature of the interference fringes around the

defects A and B was established by Negishi et al. (2007) by

analyzing their positions in the X-ray pattern. It turned out

that the position of the fringes moves with varying the

departure ��i. Obviously, this is similar to displacement of

the interbranch oscillations with a change in the value of !,

shown in Fig. 2. In addition, it is necessary to note that we have

considered the case of a dislocation parallel to the crystal

surface. Assuming such geometry, movement of the fringes

will take place only within the region to the side of the

dislocation line which corresponds to the appropriate sign of

��i. However, this principle may be violated in the case of

some tilt between the crystal surface and the slip plane. In this

case, with varying the value of ��i the Bragg conditions may

be locally satisfied on different sides of the image. Therefore,

the interbranch fringes may be observed on the right or on the

left sides of the image under different values of ��i which

have the same sign.

Thus, the interpretation of interference fringes induced by

an edge dislocation as an interbranch effect is in line with the

experimental study carried out by resonant scattering X-ray

topography. Because this effect occurs in the strongly

deformed region which is close to the nucleus of the defect, it

can be used for direct determination of the type of the defect

and for a local study of a lattice distortion around a defect.

5. Conclusions

Here, we sum up the main results obtained in this work.

(1) Strain-dependent changes of the X-ray intensities are

analyzed for the deformations causing the interbranch split-

ting of the local dispersion surface. It is shown that the

interbranch transformation of the local dispersion surface is

accompanied by the interbranch oscillations of the intensities

of the transmitted and diffracted waves, called transient

beating.

(2) It is established that the interbranch transient beating of

the X-ray intensities is due to the interference of the ‘new’

Bloch modes. These modes are responsible for the interbranch

redistribution of the energy and they may interfere construc-

tively beyond the dynamical diffraction region.

(3) The period of the transient beating is of the order of the

conventional extinction length. Therefore, this effect can be

observed in an X-ray topogram and it may be used to specify

the structure of a defect. Because the fringes occur in the

strongly deformed region close to the defect, they can be

considered as ‘fine structure’ of the direct image.

(4) The experimental study of the interference fringes

induced by lattice distributions around defects assumed to be

an edge dislocation is discussed. This type of defect is verified

by interpreting the fringes as the interbranch beating effect.

The author would like to thank Emeritus Professor André
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Figure 4
The volume distribution (dashed region) which contributes to the
interference fringes.


